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Abstract

Biomarker directed selection of targeted anti-neoplastic agents such as immune checkpoint

inhibitors, small molecule inhibitors and monoclonal antibodies form an important aspect of

cancer treatment. Immunohistochemistry (IHC) analysis of the tumor tissue is the method of

choice to evaluate the presence of these biomarkers. However, a significant barrier to bio-

marker testing on tissue is the availability of an adequate amount of tissue and need for

repetitive sampling due to tumor evolution. Also, tumor tissue testing is not immune to inter-

and intra-tumor heterogeneity. We describe the analytical and clinical validation of a Circu-

lating Tumor Cell (CTC) assay to accurately assess the presence of PD-L1 22C3 and PD-

L1 28.8, ER, PR and HER2, from patients with solid tumors to guide the choice of suitable

targeted therapies. Analytically, the test has high sensitivity, specificity, linearity and preci-

sion. Based on a blinded case control study, the clinical sensitivity and specificity for PD-L1

(22C3 and 28.8) was determined to be 90% and 100% respectively. The clinical sensitivity

and specificity was 83% and 89% for ER; 80% and 94% for PR; 63% and 89% for HER2 (by

ICC); and 100% and 92% for HER2 (by FISH), respectively. The performance characteris-

tics of the test support its suitability and adaptability for routine clinical use.

1. Introduction

Rapid advances in the understanding of key cellular pathways that drive cancer cell survival

and proliferation have guided the development and use of molecularly targeted therapies in

solid tumors. These molecular targets can be cell surface receptors or particular genetic alter-

ations such as mutations, fusions or translocations that confer an oncogenic potential to cancer

cells. Such anticancer agents act on specific molecular targets expressed preferentially by neo-

plastic cells, and therefore are expected to be more effective with fewer side effects than con-

ventional cytotoxic anticancer treatments (chemotherapy) [1]. A wide range of targeted drugs
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have been approved by the US Food and Drug Administration and also recommended as stan-

dard of care therapies for multiple solid organ tumors. Immune checkpoint inhibitors Pem-

brolizumab, Nivolumab, Atezolizumab, Cemiplimab-rwlc, Ipilimumab for certain PD-L1

positive tumors; hormonal therapy such as Tamoxifen, Fulvestrant, Anastrozole, Letrozole,

Exemestane targeting estrogen receptor (ER) in breast cancer; anti-HER2 drugs for HER2

overexpressing breast, colon, rectal, gastric and esophageal tumors are a few examples of tar-

geted therapies in routine clinical use.

Accurate detection of the presence of these theranostic markers in tumor samples from can-

cer patients is the most crucial and ongoing need for directing the choice of targeted therapy

for the patient. Programmed death-ligand 1 (PD-L1) expression in tumor tissue is a predictor

for the efficacy of immune checkpoint inhibitors (ICIs) in some solid tumors. In addition to

limitations inherent to tissue biopsy, predicting response to ICI therapy remains a challenge

owing to variation in the choice of PD-L1 detection antibodies and relevant cell population,

positivity cut-off values, sample processing, spatial and temporal heterogeneity in PD-L1

expression, and oncogenic versus induced PD-L1 expression [2–4].

Biomarker-guided systemic therapy in breast cancer is based on the several molecular sub-

types of the disease determined by gene expression profiling and immunohistochemistry

(IHC) analysis [5–9]. Discordance in tumor characteristics, predominantly the receptor status,

of primary and metastatic breast cancer is largely due to tumor progression and evolution, the

choice of adjuvant therapies and sites of metastasis [10–12]. As clinically relevant discordances

in hormone receptor (ER, estrogen receptor; PR, progesterone receptor) and human epidermal

growth factor receptor 2 (HER2) status impact prognosis, subsequent therapy choices and

patient management [11, 13–15], it warrants biopsy and retesting of the metastatic lesions for

these markers [16–19]. However, biopsies of metastases or serial biopsies in case of disease

progression are cumbersome, expensive, restricted to the most accessible metastatic site and

do not account for intra-tumor and inter-metastatic heterogeneity. Such biopsies may also not

be feasible or warranted due to poor ECOG performance score or co-morbidities.

CTC characterisation has the potential for non-invasive evaluation of these biomarkers for

treatment selection as well as for longitudinal assessments to determine changes to biomarker

status enabling predictive therapeutic course corrections [20–22]. We have previously demon-

strated that CTCs are ubiquitous in various cancers, irrespective of radiological, metastatic or

therapy status and can be utilized for non-invasive diagnostic triaging [23, 24]. Here, we dem-

onstrate the method development, optimization, analytical and clinical validation of a CTC

based technology to evaluate therapeutically relevant targets viz. PD-L1, ER, PR and HER2

from blood samples of patients with solid organ cancers to guide choice of suitable targeted

therapies.

2. Methods

2.1. Samples

All biological samples for the method development, optimization and validation were obtained

from participants in two studies, TRUEBLOOD (CTRI/2019/03/017918) and RESOLUTE

(CTRI/2019/01/017219). Both studies, TRUEBLOOD and RESOLUTE were approved by

Datar Cancer Genetics Limited Institutional Ethics Committee. The approval letters are avail-

able at:

http://ctri.nic.in/Clinicaltrials//WriteReadData/ethic/

9337723928ECApprovalLetterTrueBloodAmendment.pdf

http://ctri.nic.in/Clinicaltrials//WriteReadData/ethic/

6623151333ApprovalLetterbyEC-RESOLUTE.pdf
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In addition, leftover blood samples from known (recently diagnosed or pre-treated) cancer

patients who availed of Datar Cancer Genetics’s commercial services for cancer management

as well as healthy (asymptomatic) volunteers at the organization were also obtained. All partic-

ipants provided written informed consent. Both studies were performed in accordance with

the Declaration of Helsinki.

Peripheral blood mononuclear cells, Formalin-fixed, Paraffin-embedded (FFPE) tissue sec-

tions, cell lines and CTCs were used for FISH. Fresh tissue collected from all study participants

was transported in transport medium or RNA later solution at 4˚C. FFPE tissue samples were

transported to the laboratory at room temperature. All samples were processed at the DCGL

Laboratory facility accredited by the College of American Pathologists (CAP) as well as Clini-

cal Laboratory Improvement Amendments (CLIA).

2.2. Antisera and cell lines

The details of antisera and cell lines are provided in S1 Table. The purity of the cell lines was

confirmed by Short Tandem Repeat (STR) Profiling and testing for Mycoplasma every 6

months.

2.3. Enrichment of circulating tumor cells from peripheral blood

Aliquoted blood samples (5 mL) were processed for the enrichment of CTCs from peripheral

blood mononuclear cells (PBMC) as described previously [25]. PBMCs were treated with a

proprietary differentially cytotoxic medium for up to 100 hours at 37˚C under 5% CO2, 4%

O2. The medium induces cell death in normal (non-malignant) cells with functional apoptotic

machinery while simultaneously conferring survival privilege on apoptosis-resistant cells of

tumorigenic origin, i.e. Circulating Tumor Associated Cells (C-TACs; EpCAM+, PanCK+,

CD45±) and their clusters. C-TACs include CTCs (EpCAM+, PanCK+, CD45-) as well as

other cell types such as Tumor Associated Macrophages (TAMs) and Tumor Associated Fibro-

blasts (TAFs).

2.4. Immunocytochemistry profiling of CTCs

The process of ICC profiling of CTCs was as described previously [24]. Representative fluores-

cent images of Circulating Tumor Cells (CTCs) isolated from cancer patient samples

immuno-stained for A) PD-L1 22C3, B) PD-L1 28.8, C) ER, D) PR, and E) HER2 are provided

in S1 Fig.

2.5. Fluorescence in situ hybridization (FISH)

Tissue sections were fixed on poly-L-Lysine coated slides for 1 h at 60 0C and then incubated

at 70 0C for 10 min. Sections were dehydrated with serially diluted ethyl alcohol (increasing

concentration), deparaffinized with 2 washes of xylene and finally rehydrated with serially

diluted ethyl alcohol (decreasing concentration). Sections were preheated and then subjected

to proteolysis with pepsin at 37 0C for 35 min. Following proteolysis, sections were washed

with 1x saline sodium citrate (SSC) and dehydrated with serially diluted ethyl alcohol. DNA

probe was carefully overlaid over tissue sections and covered with a coverslip. Denaturation

was performed at 72 0C for 12 min followed by incubation in a humidified chamber for 17.5

hours. Post hybridization washing was performed twice for five minutes with wash buffer

(manufacturer provided).

SKBR3 and PBMCs were diluted to ~1000 cells. CTCs with cell viability of>90% and

approximately 500–1000 cells per reaction were used. Cells were fixed with fresh 3:1 methanol:
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glacial acetic acid for 5 min. Cells were harvested by centrifugation (400 × g, 5 min, room tem-

perature) and resuspended in minimal diluent (as required for the number of assays). Slides

were cleaned with 70% ethanol and coated with Poly-L-lysine before use. Approximately 10 μl

of the fixed cell suspension was placed on the slide. Freshly prepared 3: 1 methanol–acetic acid

fixative was carefully overlaid on the cell suspension where a crater forms within the cell sus-

pension. Additional fixative was overlaid dropwise until the aqueous solution drew back to the

slide edges. The slide was then drained, dried and immersed in ice-cold methanol for 5 min.

Fixed cells were treated with 2x SSC for 2 min followed by enzymatic proteolysis for 15 min.

Post fixation of the slides was performed using 1% formaldehyde solution for 5 min followed

by washing for 15 min using 1x Tris buffered saline (TBS) and dehydration using serially

diluted ethanol. DNA probe was added onto the slide and covered with a coverslip. Denatur-

ation was performed at 72 0C for 12 min followed by incubation in a humidified chamber for

17.5 hours. Post-hybridization washes (2x) were performed for 2 min with cytology stringency

buffer and 5 min with cytology wash buffer SSC.

Finally, all slides (tissue / cells) were incubated with 40,6-diamidino-2-phenylindole (DAPI)

for nuclear staining. Samples were then treated with antifade mountant for 15 min at room

temperature. All slides were scanned on an Axio Imager Z2 (Carl Zeiss Oberkochen, Ger-

many). Single color images were captured in several focus planes to capture both fluorophores.

The reporting of all FISH samples was as per ASCO-CAP 2018 HER2 Testing Guidelines [26–

28]. Representative fluorescent images of Circulating Tumor Cells (CTCs) and corresponding

tumor tissue from a breast cancer patient positive for HER2 gene amplification (green) as eval-

uated by FISH is provided in S2 Fig.

2.6. Positive and negative controls

The FISH assay included SKBR3 reference cell line as the positive control (with reported

ERBB2 gene amplification) while peripheral blood mononuclear cells (PBMCs) isolated from

asymptomatic individuals (males + females) with no history, suspicion or risk of cancer were

used as negative control.

2.7. Probe design

The CE IVD approved ZytoLight SPEC ERBB2/CEN 17 Dual Color Probe (PL8) was used for

fluorescence in situ hybridization. The probe is a cocktail of ZyOrange (ex: 547 nm, em: 572

nm) labelled probe specific for the alpha satellite centromeric region of chromosome 17

(D17Z1, CEN17) and ZyGreen (ex: 503 nm, em: 528 nm) labelled probe specific for the chro-

mosomal region 17q12-q21.1 harboring the ERBB2 gene.

2.8. IHC analysis

FFPE tissue was analyzed by IHC using Anti-Her-2 (Polyclonal, DAKO) as per standard pro-

cedures and the results were analyzed as per ASCO-CAP guidelines.

2.9. Method development and optimization–ICC

Details of method development and optimization studies as well as their findings are provided

in the Supplementary materials. Fig 1 is a Schema of the test showing the various steps in CTC

enrichment followed by ICC/FISH profiling for therapeutic biomarkers.
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2.10. Analytical validation—ICC

Details of extensive analytical validations which established the performance characteristics of

the test as well as their findings are provided in the Supplementary materials.

2.11. Analytical validation—FISH

Analytical validation of the FISH process was performed using healthy donor PBMCs and

ERBB2/CEN17 positive SKBR3 reference cells. Details of the asymptomatic samples are pro-

vided in S2 Table and Supplementary materials.

2.12. Clinical study—ICC

The ability of the test to detect therapeutically relevant markers PD-L1, ER, PR and HER2 in

the blood from cancer patients (n = 192) across 8 different solid organ tumors was ascertained

and established. All clinical samples were divided into discrete non-overlapping Training and

Test sets. The operator was always blinded to the clinical status of the samples (marker positive

or negative) irrespective of Training or Test sets in order to eliminate any potential bias in

sample processing. After generation of sample data, these were provided to the analysts who

evaluated the concordance between the clinical status and the test findings. The analysts were

initially unmasked to the clinical status of samples (marker positive or marker negative) in the

Training set for the purpose of evaluating the initial concordance between the marker and

clinical status. Concordance analysis in Training set was intended to identify markers with low

or no concordance so that they may be excluded from further analysis. Once initial concor-

dance was established, the analysts were then provided the marker status of samples in the Test

set based on which the clinical status was predicted in a blinded manner. After the prediction

was completed for all samples, the analysts were then unmasked to the actual clinical status of

samples. The concordance between the predicted and actual clinical status was evaluated to

determine the performance characteristics of the test including sensitivity, specificity and

accuracy. Demographic details of the cancer patients are provided in S3 Table.

2.13. Clinical study—FISH

Clinical Validation of the test to detect HER2 (ERBB2) gene amplification was established

across 2 studies. For the first study, a blinded case control analysis was performed on CTCs

from 54 breast cancer samples where HER2 copy number status was pre-determined on corre-

sponding tumor tissue samples by FISH. For the second study, 44 breast cancer samples were

utilised to determine the concordance between FISH and IHC on tumor tissue with FISH per-

formed on CTCs from matched blood samples of same patients.

3. Results

3.1. Statistical analysis

Statistical considerations were an integral part of method validation (analytical and clinical).

In analytical validations, samples were evaluated in multiple replicates, and the mean of obser-

vations was reported along with the Coefficient of Variation (CV, %) which was determined

Fig 1. Schema of test. Functional enrichment of CTCs is achieved using an epigenetically activating medium that eliminates all non-

malignant cells and permits tumor derived malignant cells to survive. Subsequently, the multiplexed immunocytochemistry (ICC)

evaluates the presence of therapeutically relevant markers (PD-L1 22C3, PD-L1 28.8, ER, PR, and HER2) on respective CTCs.

Fluorescence in situ hybridization (FISH) for HER2 assesses the amplification of this gene in enriched CTCs. The representative FISH

image shows DAPI-stained nuclei of CTCs with HER2 gene amplification (green).

https://doi.org/10.1371/journal.pone.0270139.g001
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from the Mean and Standard Deviation for Precision, Robustness, and Interference. Sensitiv-

ity, Specificity, and Accuracy were calculated using standard formulae (https://www.medcalc.

org/calc/diagnostic_test.php) based on True Positives, True Negatives, False Positives, and

False Negatives from testing of multiple replicates of samples and reported along with the 95%

CI. Precision was derived from the Mean and Standard Deviation from testing of multiple rep-

licates and reported as the %CV. For Linearity, the coefficient of determination was reported

based on the Regression analysis performed. In clinical validation, Specificity and median val-

ues for Sensitivity and Accuracy were calculated using standard formulae based on True Posi-

tives, True Negatives, False Positives and False Negatives and the values have been reported

along with the 95% CI range.

3.2. Analytical validation—ICC

The overall findings of the analytical validation study are presented in Table 1. The detailed

findings are provided in Supplementary materials.

3.3. Analytical validation—FISH

The detailed findings of the analytical validation by FISH are provided in Supplementary

materials.

3.4. Clinical validation—ICC

We evaluated the performance characteristics of the test in a case control cross validation

study. The study included sub-cohorts for PD-L1 22C3, PD-L1 28.8, ER, PR and HER2 where

status of markers (positive or negative) was previously established via immunohistochemistry

(IHC) of tumor tissue obtained by invasive biopsy. Samples were assigned to training and test

sets in a 70%:30% ratio. Following initial assignment of samples into training and test sets,

samples were shuffled and a random 30% selected successively to generate a total of 20 itera-

tions of the test set. The performance characteristics of the test were evaluated across the 20

iterations of the test set (S4 Table); this cross validation model avoided anomalous results from

overfitting (biased selection) as well as random enrichment (unbiased selection) of samples in

the test set. Based on the cross validation, the median sensitivities for the markers as well as the

best and worst case scenarios are presented in Table 2. The median sensitivity was 90% for

PD-L1 22C3, 90% for PD-L1 28.8, 83% for ER, 80% for PR and 63% for HER2. The median

Table 1. Summary of analytical validation. The findings of Analytical Validation indicate that the Test provides reliable, accurate and reproducible results when samples

are obtained, stored and processed under the recommended conditions.

PD-L1 22C3 PD-L1 28.8 ER PR HER2

Analyte Stability 24 h 24 h 24 h 24 h 24 h

Recovery >85% >85% >85% >85% >85%

Linearity >0.99 >0.99 >0.99 >0.99 >0.99

Linear Range 7–1000 cells / 5 mL 7–1000 cells / 5 mL 5–1200 cells / 5 mL 5–1200 cells / 5 mL 5–1200 cells / 5 mL

LoB 0 cells / mL 0 cells / mL 0 cells / mL 0 cells / mL 0 cells / mL

LoD 2 cells / 5 mL 2 cells / 5 mL 3 cells / 5 mL 3 cells / 5 mL 3 cells / 5 mL

LoQ 7 cells / 5 mL 7 cells / 5 mL 5 cells / 5 mL 5 cells / 5 mL 5 cells / 5 mL

Sensitivity 87.5% (73.2% - 95.81%) 90% (76.34% - 97.21%) 87.5% (73.2% - 95.81%) 95% (83.08% - 99.39%) 92.5% (79.61% - 98.43%)

Specificity 100% (86.28% - 100%) 100% (86.28% - 100%) 100% (86.28% - 100%) 100% (86.28% - 100%) 100% (86.28% - 100%)

Accuracy 92.31% (82.95% - 97.46%) 93.85% (84.99% - 98.30%) 92.31% (82.95% - 97.46%) 96.92% (89.32% - 99.63%) 95.38% (87.10% - 99.04%)

Precision CV� 2.4% CV� 2.4% CV � 2.4% CV � 2.4% CV� 2.4%

https://doi.org/10.1371/journal.pone.0270139.t001

PLOS ONE CTC based evaluation of therapeutic targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0270139 June 17, 2022 7 / 17

https://www.medcalc.org/calc/diagnostic_test.php
https://www.medcalc.org/calc/diagnostic_test.php
https://doi.org/10.1371/journal.pone.0270139.t001
https://doi.org/10.1371/journal.pone.0270139


specificity was 100% for PD-L1 22C3, 100% for PD-L1 28.8, 89% for ER, 94% for PR and 89%

for HER2.

3.5. Clinical validation—FISH

Clinical Validation of the test was established across 2 studies.

Table 2. Clinical performance characteristics. The table provides the performance characteristics of the Test which were determined from 20 iterations of the Test Set

and the Best-, Median- and Worst-Case values are reported.

Sensitivity Specificity Accuracy

PD-L1 22C3 Training Set 86% 96% 92%

Test Set (Worst) 70% (50% - 90%) 100% (100% - 100%) 86% (71% - 100%)

Test Set (Median) 90% (77% - 100%) 100% (100% - 100%) 95% (86% - 100%)

Test Set (Best) 100% (100% - 100%) 100% (100% - 100%) 100% (100% - 100%)

PD-L1 28.8 Training Set 86% 96% 92%

Test Set (Worst) 70% (50% - 90%) 91% (79% - 100%) 86% (71% - 100%)

Test Set (Median) 90% (77% - 100%) 100% (100% - 100%) 90% (78% - 100%)

Test Set 100% 100% 100%

(Best) (100% - 100%) (100% - 100%) (100% - 100%)

ER Training 83% 94% 88%

Set

Test Set 72% 71% 78%

(Worst) (57% - 88%) (56% - 87%) (64% - 92%)

Test Set (Median) 83% 89% 84%

(70% - 96%) (79% - 100%) (72% - 97%)

Test Set 94% 100% 94%

(Best) (87% - 100%) (100% - 100%) (85% - 100%)

PR Training 83% 92% 88%

Set

Test Set 60% 88% 77%

(Worst) (43% - 77%) (76% - 99%) (63% - 92%)

Test Set 80% 94% 87%

(Median) (66% - 94%) (85% - 100%) (75% - 99%)

Test Set 93% 100% 97%

(Best) (85% - 100%) (100% - 100%) (91% - 100%)

HER2 Training 67% 91% 84%

Set

Test Set 38% 72% 69%

(Worst) (19% - 56%) (55% - 89%) (51% - 87%)

Test Set (Median) 63% 89% 79%

(44% - 81%) (77% - 100%) (63% - 95%)

Test Set 100% 100% 92%

(Best) (100% - 100%) (100% - 100%) (82% - 100%)

HER2 (FISH) Training 89% 97% 95%

Set

Test Set 75% 83% 81%

(Worst) (54% - 96%) (65% - 100%) (62% - 100%)

Test Set 100% 92% 94%

(Median) (100% - 100%) (78% - 100%) (82% - 100%)

Test Set 100% 100% 100%

(Best) (100% - 100%) (100% - 100%) (100% - 100%)

https://doi.org/10.1371/journal.pone.0270139.t002
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3.5.1. Study 1. The first study was a blinded case control study using CTCs from 54

known cases of breast cancer where ERBB2 gain (or its absence) was previously established on

biopsied tumor tissue samples by FISH. This study employed a 20-fold cross validation design

to determine the sensitivity and the specificity.

Based on the cross validation, the median sensitivities for the markers as well as the best

and worst case scenarios are presented in Table 2 and S4 Table (HER2 FISH). The median sen-

sitivity, specificity and accuracy was 100%, 92% and 94% for ERBB2 on CTCs as evaluated by

FISH.

3.5.2. Study 2. The second study was based on samples from 44 known cases of breast

cancer. The samples in this study included a subset of samples from the first study as well as

additional clinical samples which were not included in the first study. In the samples included

in this study ERBB2 (HER2) status was previously established on tumor tissue by immunohis-

tochemistry (IHC) as well as by FISH and on CTCs from matched blood samples collected

from the same patients. The second study included samples where IHC of tumor tissue had

indicated equivocal findings for HER2. This study established the concordance of tumor tis-

sue-FISH as well as CTC-FISH with tumor tissue-IHC.

Among the 44 malignant samples where C-ETACs were analyzed, IHC indicated HER2

positivity in 10 samples, negative status in 25 samples and equivocal status in 9 samples.

Among the HER2 positive samples, tissue FISH and CTC FISH had sensitivities of 80% and

90% respectively. Among the HER2 negative samples tissue FISH and CTC FISH had specifici-

ties of 100% and 96% respectively. Among the equivocal samples both tissue FISH and CTC

fish indicated positive status in the same 2 samples and negative status in the same 7 samples

(S5 Table).

4. Discussion

We describe a non-invasive CTC-based assay for evaluation of therapeutically relevant bio-

markers PD-L1, ER, PR and HER2 in blood samples from cancer patients with potential for

clinical application in solid organ tumors. This test will be especially beneficial in cases where

tissue insufficiency is encountered and / or an invasive tissue biopsy for tumor profiling is

unviable. The test showed high analytical as well as clinical performance characteristics, which

support its intended use for evaluation of target biomarkers for therapy selection.

Target biomarker expression is a prerequisite to identify cancer patients who are likely to

benefit from targeted anticancer agents such as small molecules (e.g., TKI) or monoclonal anti-

bodies (e.g., immune checkpoint inhibitors (ICI)). Although tumor tissue analysis by IHC

remains the gold standard for most clinical molecular analysis for targeted therapy selection

(with the exception of NGS for EGFR, BRAF or NTRK gene variants), it faces several biological

and technological challenges. Liquid biopsy can be a viable alternative to tissue biopsy for

determining expression of target biomarkers to guide therapy selection. Circulating tumor

cells (CTCs), being the cells of tumorigenic origin in the bloodstream, represent an ideal bio-

marker for theranostic applications in cancer therapy [21]. Serial monitoring of tumor marker

profile for monitoring dynamic alterations in marker status during disease progression or

treatment is viable with CTCs which is not possible with tumor tissue. Changes in biomarker

status have been previously reported in up to 42% of cases evaluated for either PD-L1, ER, PR

or HER2 [29–35].

We have earlier demonstrated the clinical utility of circulating tumor cells enriched by this

unique method, for screening, diagnostic triaging and non-invasive assessment of response to

cytotoxic chemotherapy agents (CCA) in solid organ cancers [23–25]. In this study, we
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establish the clinical utility of CTCs obtained from patients with solid tumors in evaluating the

therapeutically relevant targets, PD-L1, ER, PR and HER2 to guide choice of targeted

therapies.

Targeting the immune checkpoint proteins (PD-L1 or PD-1) with inhibitory mABs is a

treatment strategy in multiple cancers. The expression of PD-1 and PD-L1 proteins, is consid-

ered to be one of the factors predictive of response to ICI. IHC profiling of PD-L1 status is rou-

tinely used to identify patients likely to benefit from ICI therapies. Despite the reported value

of assessing PD-L1 overexpression on cells of different types in solid tumors as a promising

marker, its predictive value is restricted due to limitations of tumor tissue biopsy, dynamic

expression profile of PD-L1, intratumoral heterogeneity as well as the influence of immune

cell infiltrate in the tumor and its microenvironment [2, 36]. Here, we demonstrate high speci-

ficity (100%) and sensitivity (90%) for both PD-L1 22C3 and PD-L1 28.8 antibody clones for

detecting PD-L1 positive CTCs in patient samples. Although, the recommendation for ICI

therapy based on our assay will be for cancer types as per standard guidelines and recommen-

dations, owing to the nature of the analyte, we could eventually extend it to a tumor-agnostic

setting.

Cheng et al. recently demonstrated the feasibility of CTC PD-L1 detection in peripheral

blood using membrane filtration based on size [37]. Another study presented that PD-L1 sta-

tus in CTCs and circulating WBCs correlate with PD-L1 status in tumor tissue, revealing the

potential of CTCs assessment as a non-invasive real-time biopsy to evaluate PD-L1 expression

in patients with advanced-stage NSCLC [38]. Bergmann et al also evaluated the feasibility to

detect CTC-PD-L1 expression in patients with advanced urothelial carcinoma using the Cell-

Search1 system [39]. Although these studies have shown the feasibility and prognostic value

of PD-L1 expression on CTCs, none of them have explored their therapeutic utility. A recent

study by Choi et al on circulating tumor cell proportion scoring (CTPS) based PD-L1 assess-

ment concluded that pure-CTCs based CTPS could be deployed for innovative diagnosis strat-

egies as alternatives for tissue biopsy and to guide the personalized treatment in NSCLCs [40].

ER, PR and HER2 status is prognostic and predictive in breast cancer [41, 42]. The choice

of targeted therapies in breast, ovarian and uterine neoplasms depends on the expression of

ER/PR on the tumor cells. Aromatase inhibitors Anastrozole, Letrozole, Exemestane; Estrogen

receptor antagonists Tamoxifen and Fulvestrant are indicated for use in ER positive breast

cancer. Aromatase inhibitors, Megestrol acetate, Medroxyprogesterone acetate and GnRH

analogs are recommended for use in ER/PR-positive uterine sarcomas. HER2 positivity is asso-

ciated with clinical benefit from anti-HER2 therapies in breast, colon, rectal, esophageal and

gastric cancers. With our test, we show sensitivity of 83%, 80% and 63% and specificity of 89%,

94%, 89% for ER, PR, HER2 respectively on CTCs derived from known cancer patients. Stud-

ies have reported significant heterogeneity between ER/PR/HER2 protein expression in CTCs

and primary tumor/metastatic biopsy, and this status may change over time due to therapy

[11, 42–45]. In our CTC-based test, we observed slightly lower sensitivity for HER2 by ICC

than other markers. However, we observed 100% median sensitivity and 92% specificity for

HER2 as determined by FISH. Further, CTC FISH had sensitivity of 90% among HER2 posi-

tive samples, and 96% specificity among HER2 negative samples with 100% concordance with

tissue-FISH for equivocal samples (Table 2 and S5 Table).

The extent of discordance in marker status is varied across studies probably owing to differ-

ent techniques used for evaluation of marker status. Clonal selection of minor subtype of cells

“hidden” within the primary tumor following treatment, tumor heterogeneity, CTC selection

process or inaccurate receptor status assessment of the primary tumor are speculated to be

contributing factors for the observed discordance in tumor marker profile of primary tumor

and CTCs [46, 47]. A few studies elucidating the clinical relevance of this observation have
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been carried out. In the Treat CTC randomized phase II trial, patients with HER2 non-ampli-

fied breast cancer and�1 centrally confirmed CTC/15 ml of blood were randomized (1:1) to

Trastuzumab treatment. Trastuzumab did not decrease the detection rate of CTCs in HER2

non-amplified, non-metastatic breast cancer. However, as patients were eligible for this trial

irrespective of CTCs HER2 status, the conclusions of this trial may not be directly relevant

here [48]. The results of the randomized DETECT III trial suggested that Lapatinib resulted in

early declines in circulating tumor cell counts (CTCs) in patients with initially HER2-negative

metastatic breast cancer but HER2-positive CTCs [49]. Thus, it seems imperative to evaluate

CTC based tumor marker status for personalised therapy guidance and monitoring.

Recent studies have described the evaluation of biomarkers—PD-L1, ER, PR and HER2 on

CTCs and have emphasized on the clinical utility of CTCs to guide therapy selection [50–53].

While these approaches provide initial proof of concept for CTC-based biomarker analysis,

their clinical application has not yet been achieved due to low efficiency of CTC capture tech-

niques in these studies. Our test uses a proprietary CTC enrichment method which yields suffi-

cient CTCs in almost all samples (>95%) for meaningful downstream applications such as the

evaluation of these biomarkers for therapy selection. This is reflected in the higher clinical sen-

sitivity and overall concordance of our test. Therefore, this test is a far superior alternative for

CTC-based evaluation of these therapeutically relevant biomarkers and has immediate clinical

application.

The test has not been presently validated for concurrent analysis of multiple markers within

a single multiplexed analysis. The test shows a superior sensitivity (100%) for evaluation of

HER2 on CTCs using FISH but the same high accuracy was not observed for evaluation of

HER2 by ICC. Discordances in HER2 assessment based on protein expression (ICC/IHC) and

gene amplification (FISH) have been reported in literature. HER2 gene amplification seems to

be very constant in different tumor regions, as opposed to greater variability observed with

protein expression as assessed by IHC staining. This in turn is reflected in lower concordance

rates between IHC and FISH [54–56]. As HER2-ICC also evaluates HER2 protein expression

similar to IHC, it is subject to this observed variability, which may be the cause of decreased

sensitivity as compared to HER2-FISH in our assay.

Presently, the test is qualitative in nature because although the test determines positivity

based on the presence of CTCs above a numerical threshold, the output is binary, i.e., (Positive

or Negative). Since the test is not intended to provide quantitative insight into biomarker

expression such as the magnitude of antigen expression or the proportion / number of marker

positive cells, it is also not intended as a surrogate marker of treatment outcomes or disease

status. Furthermore, this test has not been prospectively evaluated for treatment response and

patient survival where CTC profiling-based treatment guidance was used for therapy selection.

Overall, the study findings indicate that our assay for ICC characterisation of CTCs can

substitute IHC analysis of tumor tissue for profiling of therapeutically relevant markers. This

approach has application in cases where tumor tissue may be limited and / or where an inva-

sive biopsy to obtain tumor tissue may be unviable as also where tumor evolution is suspected.

5. Conclusions

We describe a blood-based, non-invasive test which detects therapeutic biomarkers on CTCs

with high sensitivity and specificity. The CTC based detection of PD-L1, ER, PR and HER2

markers offers a non-invasive alternative to tissue-based IHC for selection of immune-check-

point inhibitors and targeted therapies for treatment of solid tumors. The test has the potential

to accommodate spatial and temporal heterogeneity and is ideal for repeat sampling, longitu-

dinal monitoring of tumor evolution and predictive therapeutic course corrections.
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